Ballistic dispersion in temperature gradient focusing

نویسنده

  • JUAN G. SANTIAGO
چکیده

Molecular dispersion is caused by both molecular diffusion and non-uniform bulk fluid motion. While the Taylor–Aris dispersion regime is the most familiar regime in microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic) dispersion. In most microfluidic systems, this dispersion regime is transient and quickly gives way to Taylor–Aris dispersion. In electrophoretic focusing methods such as temperature gradient focusing (TGF), however, the characteristic time scales for dispersion are fixed, and focused peaks may never reach the Taylor limit. In this situation, generalized Taylor dispersion analysis is not applicable. A heuristic model is developed here which accounts for both molecular diffusion and advective dispersion across all dispersion regimes, from pure diffusion to Taylor dispersion to pure advection. This model is compared to results from TGF experiments and accurately captures both the initial decrease and subsequent increase in peak widths as electric field strength increases. The results of this combined analytical and experimental study provide a useful tool for estimation of dispersion and optimization of TGF systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taylor-Aris dispersion in temperature gradient focusing.

Microfluidic temperature gradient focusing (TGF) uses an axial temperature gradient to induce a gradient in electrophoretic flux within a microchannel. When balanced with an opposing fluid flow, charged analytes simultaneously focus and separate according to their electrophoretic mobilities. We present a theoretical and experimental study of dispersion in TGF. We model the system using generali...

متن کامل

Effects of Vertical Temperature Gradient on Heavy Gas Dispersion in Build up Area

ewline"> Dispersion of heavy gases is considered to be more hazardous than the passive ones because it takes place more slowly. ...

متن کامل

Ballistic thermal transport in silicon nanowires

We have experimentally investigated the impact of dimensions and temperature on the thermal conductivity of silicon nanowires fabricated using a top-down approach. Both the width and temperature dependences of thermal conductivity agree with those in the existing literature. The length dependence of thermal conductivity exhibits a transition from semi-ballistic thermal phonon transport at 4 K t...

متن کامل

Scaling laws of passive tracer dispersion in the turbulent surface layer.

Experimental results for passive tracer dispersion in the turbulent surface layer under stable conditions are presented. In this case, the dispersion of tracer particles is determined by the interplay of three mechanisms: relative dispersion (celebrated Richardson's mechanism), shear dispersion (particle separation due to variation of the mean velocity field) and specific surface-layer dispersi...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008